

 Navigation

 	
 index

 	
 next |

 	undebt documentation

Undebt

This is the documentation for Undebt [https://github.com/Yelp/undebt]. See below for a list of all of the articles hosted here.

	Undebt: Command Line Interface
	Install it

	Read it

	Try it out

	Tips and Tricks
	Using with grep/git grep to find files

	Using find to limit to a particular extension

	Using xargs to work in parallel

	Undebt: Pattern Files
	Basic Style

	Advanced Style

	Multi-Argument Replace

	Undebt: Examples
	undebt.examples.nl_at_eof

	undebt.examples.dbl_quote_docstring

	undebt.examples.class_inherit_object

	undebt.examples.hex_to_bitshift

	undebt.examples.exec_function

	undebt.examples.attribute_to_function

	undebt.examples.method_to_function

	undebt.examples.sqla_count

	undebt.examples.remove_unused_import

	undebt.examples.contextlib_nested

	undebt.examples.remove_needless_u_specifier

	undebt.examples.swift

	Undebt: Pattern Utilities
	undebt.pattern.util

	undebt.pattern.common

	undebt.pattern.lang
	undebt.pattern.lang.python

	undebt.pattern.interface

	undebt.cmd.logic

	Undebt: Using pyparsing
	Operators

	Functions

	Undebt: Contributing
	Getting Started

	Getting Setup

	Running the Tests

	Adding Documentation

 Copyright 2016, Yelp Inc..
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	undebt documentation

Undebt: Command Line Interface

Install it

$ git clone https://github.com/Yelp/undebt.git
$ cd undebt
$ pip install .

Read it

$ undebt --help
usage: undebt [-h] --pattern MODULE [--verbose] [--dry-run]
 [FILE [FILE...]]

positional arguments:
 FILE [FILE...]
 paths to files to be modified (if not passed uses
 stdin)

optional arguments:
 -h, --help show this help message and exit
 --pattern MODULE, -p MODULE
 pattern definition modules
 --verbose, -v
 --dry-run, -d only print to stdout; do not overwrite files

Try it out

$ undebt -p undebt.examples.method_to_function ./tests/inputs/method_to_function_input.txt
$ git diff
diff --git a/tests/inputs/method_to_function_input.txt b/tests/inputs/method_to_function_input.txt
index f268ab9..7681c63 100644
--- a/tests/inputs/method_to_function_input.txt
+++ b/tests/inputs/method_to_function_input.txt
@@ -1,13 +1,14 @@
+from function_lives_here import function
 something before code pattern
 @decorator([Class])
 def some_function(self, abc, xyz):
 """herp the derp while also derping and herping"""
 cde = fgh(self.l)
 ijk = cde.herp(
- opq_foo=FOO(abc).method()
+ opq_foo=function(FOO(abc))
)['str']
 lmn = cde.herp(
- opq_foo=FOO(xyz).method()
+ opq_foo=function(FOO(xyz))
)['str']
 bla bla bla
 for str_data in derp_data['data']['strs']:
@@ -16,8 +17,8 @@ bla bla bla
 rst.uvw(
 CTA_BUSINESS_PLATFORM_DISABLED_LOG,
 "derp {derp_foo} herp {herp_foo}".format(
- derp_foo=FOO(derp_foo).method(),
- herp_foo=FOO(herp_foo).method(),
+ derp_foo=function(FOO(derp_foo)),
+ herp_foo=function(FOO(herp_foo)),
),
)
 something after code pattern

Tips and Tricks

Most of these will make use of xargs [http://man7.org/linux/man-pages/man1/xargs.1.html]

Using with grep/git grep to find files

grep -l <search-text> **/*.css | xargs undebt -p <pattern-module>

Use git grep if you only want to search tracked files
git grep -l <search-text> | xargs undebt -p <pattern-module>

Using find to limit to a particular extension

find -name '*.js' | xargs grep -l <search-text> | xargs undebt -p <pattern-module>

Using xargs to work in parallel

xargs takes a -P flag, which specifies the maximum number of processes
to use.

git grep -l <search-text> | xargs -P <numprocs> undebt -p <pattern-module>

 Copyright 2016, Yelp Inc..
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	undebt documentation

Undebt: Pattern Files

Undebt requires a pattern file that describes what to replace and how to replace it. There are two different ways to write pattern files: basic style, and advanced style. Unless you know you need multi-pass parsing, you should use basic style by default.

Basic Style

If you don’t know what style you should be using, you should be using basic style. When writing a basic style pattern, you must define the following names in your pattern file:

	grammar defines what pattern you want to replace, and must be a pyparsing [http://pyparsing.wikispaces.com/?responseToken=0e496b5858334de54399a12b24b815040] grammar object.

	replace is a function of one argument, the tokens produced by grammar, that returns the string they should be replaced with, or None to do nothing (this is the single-argument form—multi-argument is also allowed as documented below).

	(optional) extra can be set to a string that will be added to the beginning (after the standard Python header) of any file in which there’s at least one match for grammar and in which extra does not already appear in the header (this feature is commonly used for adding in imports).

That sounds complicated, but it’s actually very simple. To start learning more, it’s recommended you check out Undebt’s example patterns and pattern utilities.

Advanced Style

Unlike basic style, advanced style allows you to use custom multi-pass parsing—if that’s not something you need, you should use basic style. When writing an advanced style pattern, you need only define one name:

	patterns is a list of (grammar, replace) tuples, where each tuple in the list is only run if the previous one succeeded

If patterns is defined, Undebt will ignore any definitions of grammar, replace, and extra. Instead, all of that information should go into the patterns list.

As an example, you can replicate the behavior of the basic style extra by doing the following:

from undebt.pattern.lang.python import HEADER

@tokens_as_list(assert_len=1)
def extra_replace(tokens):
 if extra not in tokens[0]:
 return tokens[0] + extra + "\n"
 else:
 return None

patterns.append((HEADER, extra_replace))

Or equivalently but more succinctly:

from undebt.pattern.interface import get_pattern_for_extra

patterns.append(
 get_pattern_for_extra(
 extra
)
)

Multi-Argument Replace

In both styles, when writing a replace function, it is sometimes useful to have access to the parsing location in the file and/or the text of the original file. If your replace function takes two arguments, it will be passed location, tokens, and for three arguments, it will get text, location, tokens. This will work even if you are using one of the tokens_as_list or tokens_as_dict decorators.

 Copyright 2016, Yelp Inc..
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	undebt documentation

Undebt: Examples

The undebt.examples [https://github.com/Yelp/undebt/tree/master/undebt/examples] package contains various example pattern files. These example patterns can either simply be used as they are to make use of the transformation they describe, or used as templates to build your own pattern files.

undebt.examples.nl_at_eof

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/nl_at_eof.py])

A toy example to add a new line ("\n") to the end of files that lack one.

Example of:

	use of the tokens_as_list decorator to define a replace function with assert checks

	negative lookahead using the ~ operator

	match any character with ANY_CHAR

	match the end of a file with END_OF_FILE

undebt.examples.dbl_quote_docstring

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/dbl_quote_docstring.py])

Changes all ''' strings that can be changed to """ strings.

Example of:

	return None from replace to do nothing

	match a ''' string using TRIPLE_SGL_QUOTE_STRING

undebt.examples.class_inherit_object

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/class_inherit_object.py])

Changes classes that inherit from nothing to inherit from object, which makes sure they behave as Python 3 new-style classes instead of Python 2 old-style classes.

Example of:

	Optional to optionally match something

	.suppress method to prevent an object from appearing in the parsed tokens

	Keyword to match an individual word

	INDENT to match the beginning of a line and any leading whitespace

	NAME to match any variable name

undebt.examples.hex_to_bitshift

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/hex_to_bitshift.py])

Replaces hex flags with bitshift flags.

Example of:

	Literal to match a specific literal

	Combine to match a series of tokens without any whitespace in-between

	Word to match a word made up of a set of characters

undebt.examples.exec_function

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/exec_function.py])

Changes instances of the Python 2 style exec code in globals, locals exec statement to the universal Python style exec(code, globals, locals) (which will work on Python 2.7 and Python 3).

Example of:

	using tokens_as_list to assert multiple possible token list lengths

	ATOM to match a Python atom

undebt.examples.attribute_to_function

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/attribute_to_function.py])

Transforms uses of .attribute into calls to function, and adds from function_lives_here import function whenever an instance of function is added.

Example of:

	use of extra to add an import statement

	multiple possible patterns using the | operator

	ZeroOrMore to match any number of a pattern

	PARENS, BRACKETS to match anything inside matching parentheses and brackets

	ATOM_BASE to match a trailerless Python atom

undebt.examples.method_to_function

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/method_to_function.py])

Slightly more complicated version of attribute_to_function that finds a method call instead of an attribute access, and makes sure that method call is not on self.

undebt.examples.sqla_count

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/sqla_count.py])

Transforms inefficient SQL alchemy .count() queries into more efficient .scalar() queries that don’t create a sub query.

Example of:

	use of the tokens_as_dict decorator to define a replace function with assert checks

	grammar element function calling to label tokens in the resulting tokens_as_dict dictionary

	using leading_whitespace and trailing_whitespace to extract whitespace in a replace function

undebt.examples.remove_unused_import

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/remove_unused_import.py])

Removes from function_lives_here import function if function does not appear anywhere else in the file.

Example of:

	using a multi-argument replace function

	using HEADER to analyze the header of a Python file

undebt.examples.contextlib_nested

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/contextlib_nested.py])

Transforms uses of contextlib.nested into multiple clauses in a with statement. Respects usage with as and without as.

Example of:

	using tokens_as_dict to assert multiple possible dictionary keys

	EXPR to match a Python expression

	COMMA_IND, LPAREN_IND, IND_RPAREN to match optional indentation at particular points

undebt.examples.remove_needless_u_specifier

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/remove_needless_u_specifier.py])

In files where from __future__ import unicode_literals appears, removes unnecessary u before strings.

Example of:

	an advanced style pattern file making use of multi-pass parsing

	using in_string to determine if the match location is inside of a string

	originalTextFor to make grammar elements parse to the original text that matched them

	STRING to match any valid string

undebt.examples.swift

(Source [https://github.com/Yelp/undebt/blob/master/undebt/examples/swift.py])

Transforms uses of if let where from Swift 2.2 to the updated syntax in Swift
3.0.

Example of:

	using Undebt to transform a language that isn’t Python

Note: It’s possible that the `EXPR` grammar element used won’t match all Swift expressions; if you are concerned about this, you should define a custom `EXPR` corresponding to the syntax of a Swift expression.

 Copyright 2016, Yelp Inc..
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	undebt documentation

Undebt: Pattern Utilities

Undebt’s undebt.pattern package exposes various modules full of functions and grammar elements for use in writing pattern files, all documented here.

undebt.pattern.util

tokens_as_list(assert_len=None, assert_len_in=None)

Decorator used to wrap replace functions that converts the parsed tokens into a list. assert_len checks that the tokens have exactly the given length, while assert_len_in checks that the length of the tokens is in the provided list.

tokens_as_dict(assert_keys=None, assert_keys_in=None)

Decorator used to wrap replace functions that converts the parsed tokens into a dictionary, with keys assigned by calling grammar elements with the desired key as the argument. assert_keys checks that the keys in the token dictionary are a subset of the given keys, while assert_keys_in checks that the given keys are a subset of the keys in the token dictionary.

condense(item)

Modifies a grammar element to parse to a single token instead of many different tokens by concatenating the parsed tokens together.

addspace(item)

Equivalent to condense but also adds a space delimiter in-between the concatenated tokens.

quoted(string)

Returns a grammar element that matches a string containing string.

leading_whitespace(text)

Returns the whitespace at the beginning of text.

trailing_whitespace(text)

Returns the whitespace at the end of text.

in_string(location, code)

Determines if, at the given location in the code, there is an enclosing non-multiline string.

fixto(item, output)

Modifies a grammar element to always parse to the same fixed output.

debug(item)

Modifies a grammar element to print the tokens that it matches.

attach(item, action)

Modifies a grammar element to parse to the result of calling action on the tokens produced by that grammar element.

sequence(grammar, n)

Creates a grammar element that matches exactly n of the input grammar.

undebt.pattern.common

INDENT
Matches any amount of indentation at the start of a line.

PARENS, BRACKETS, BRACES
Grammar elements that match an open parenthesis / bracket / brace to the corresponding closing parenthesis / bracket / brace.

NAME
Grammar element that matches a variable name.

DOTTED_NAME
Grammar element to match either one or more NAME separated by DOT.

NUM
Grammar element to match a number.

STRING
Grammar element that matches a string.

TRIPLE_QUOTE_STRING, TRIPLE_DBL_QUOTE_STRING, TRIPLE_SGL_QUOTE_STRING
Grammar elements that match different types of multi-line strings.

NL
= Literal("\n")

DOT
= Literal(".")

LPAREN
= Literal("(")

RPAREN
= Literal(")")

COMMA
= Literal(",")

COLON
= Literal(":")

COMMA_IND, LPAREN_IND, IND_RPAREN
Same as COMMA, LPAREN, and RPAREN, but allow for an INDENT after (for COMMA_IND and LPAREN_IND) or before (for IND_RPAREN).

LINE_START
Matches the start of a line, either after a new line, or at the start of the file.

NO_BS_NL
Matches a new line not preceded by a backslash.

START_OF_FILE
Grammar element that only matches at the very beginning of the file.

END_OF_FILE
Grammar element that only matches at the very end of the file.

SKIP_TO_TEXT
Skips parsing position to the next non-whitespace character. To see the skipped text in a token, use originalTextFor(PREVIOUS_GRAMMAR_ELEMENT + SKIP_TO_TEXT) where PREVIOUS_GRAMMAR_ELEMENT is just whatever comes before SKIP_TO_TEXT in your grammar.

SKIP_TO_TEXT_OR_NL
Same as SKIP_TO_TEXT, but won’t skip over new lines.

ANY_CHAR
Grammar element that matches any one character, including new lines, but not non-newline whitespace. To exclude newlines, just do ~NL + ANY_CHAR.

WHITE
Normally, whitespace between grammar elements is ignored when they are added together. Put WHITE in-between to capture that whitespace as a token.

NL_WHITE
Same as WHITE but also matches new lines.

undebt.pattern.lang

Contains common patterns for a variety of languages. For example, for patterns
specific to the Python grammar, use undebt.pattern.lang.python.

undebt.pattern.lang.python

EXPR
Matches any valid Python expression.

EXPR_LIST, EXPR_IND_LIST
Matches one or more EXPR separated by COMMA for EXPR_LIST or COMMA_IND for EXPR_IND_LIST.

PARAM, PARAMS
Matches one of (PARAM), or at least one of (PARAMS), the valid Python function parameters (arg, kwarg=val, *args, **kwargs).

ATOM
Matches a single valid Python atom (that is, an expression without operators).

TRAILER, TRAILERS
Matches one of (TRAILER), or any number of (TRAILERS), the valid Python trailers (attribute access, function call, indexing, etc.).

ATOM_BASE
Matches an ATOM without any TRAILERS attached to it.

OP
Matches any valid Python operator.

BINARY_OP
Matches a valid Python binary operator.

ASSIGN_OP
Matches a valid Python assignment operator.

UNARY_OP
Matches a valid Python unary operator.

UNARY_OP_ATOM
Matches an ATOM potentially preceded by unary operator(s).

HEADER
Matches imports, comments, and strings at the start of a file. Used to determine where to insert the basic style extra.

undebt.pattern.interface

get_pattern_for_extra(extra)

Returns a (grammar, replace) tuple describing a pattern to insert extra after undebt.pattern.python.HEADER.

get_patterns(*pattern_modules)

Returns a list containing a advanced style patterns list for each pattern module in pattern_modules. The resulting list can be passed to undebt.cmd.logic.process.

undebt.cmd.logic

process(patterns, text)

Where patterns is a list of advanced style patterns lists, applies the specified patterns to the given text and returns the transformed version. Usually used in conjunction with undebt.pattern.interface.get_patterns.

 Copyright 2016, Yelp Inc..
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	undebt documentation

Undebt: Using pyparsing

While Undebt’s parsing utilities are very helpful and provide much of the necessary functionality for writing a grammar, all of the objects are pyparsing [http://pyparsing.wikispaces.com/] objects, and thus it is often necessary and/or useful to use pyparsing utilities.

While the official pyparsing documentation [https://pythonhosted.org/pyparsing/] is a great resource, most of the more advanced utilities there will usually not be necessary. This documentation is an overview of those that are most likely to be useful.

Operators

+ (And)

Adding two grammar elements produces a new grammar element that matches the first one, then the second one, with optional intervening whitespace.

| (Or)

Oring two grammar elements produces a new grammar element that attempts to match the first one, then if that fails, attempts to match the second one.

~ (Negative Lookahead)

Inverting a grammar element produces a new grammar element that produces no tokens and matches only if the inverted grammar doesn’t match. Using a negative lookahead also doesn’t advance the current parsing position.

^ (Match Longest)

Similar to |, but matches the longest of the grammar elements that match, instead of the first grammar element that matches.

Functions

Literal(str)

Creates a grammar element that matches str exactly.

Keyword(str)

Creates a grammar element that matches str only if it is surrounded by non-letters.

Optional(...)

Creates a grammar element that matches zero or one of the contained grammar element.

ZeroOrMore(...)

Creates a grammar element that matches zero or more of the contained grammar element.

OneOrMore(...)

Creates a grammar element that matches one or more of the contained grammar element.

originalTextFor(...)

Modifies a grammar element to produce only a single token that is the original text that was matched by that grammar element.

Word(charset)

Creates a grammar element that matches a word made of characters in charset.

SkipTo(...)

Skips parsing position to the next match for the contained objects.

Combine(...)

Forces any grammar elements added together inside of Combine to not match intervening whitespace and produce only a single token.

Regex(str)

Creates a grammar element that matches str as a regular expression.

 Copyright 2016, Yelp Inc..
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 previous |

 	undebt documentation

Undebt: Contributing

Getting Started

Undebt’s development is taking place on Github, so please go ahead and fork [https://github.com/Yelp/undebt#fork-destination-box] the repository if you want to begin contributing.

You’ll then want to get a local copy of the code base:

git clone git@github.com:<your-username>/undebt.git

Getting Setup

It is highly recommended that you create a virtual environment [http://docs.python-guide.org/en/latest/dev/virtualenvs/] before installing the project dependencies.

You can achieve both (create a virtualenv and install dependencies) with:

make dev

Running the Tests

Undebt uses tox [https://tox.readthedocs.io/en/latest/] for testing.

You can run the entire test suite:

make test

Or, run an individual environment:

tox -e py35 # probably need to be virtualenv

Note. If you do not have the required dependencies for each Tox environment, you will receive an error.
Avoid this by passing the --skip-missing-interpreters option.

Adding Documentation

Undebt’s documentation is formatted using reStructuredText [http://docutils.sourceforge.net/rst.html] and hosted on RTD [http://undebt.readthedocs.io/en/latest/].
Please try to follow the existing style and organization patterns.

You can test your contribution with:

make docs

Your new, local documentation will be available at docs/build/html/.

 Copyright 2016, Yelp Inc..
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	undebt documentation

Index

 Copyright 2016, Yelp Inc..
 Created using Sphinx 1.4.1.

 search.html

 Navigation

 		
 index

 		undebt documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Yelp Inc..
 Created using Sphinx 1.4.1.

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

